现代机器学习研究依赖于相对较少的精心策划数据集。即使在这些数据集中,通常在“不整合”或原始数据中,从业人员也面临着重要的数据质量和多样性问题,这些问题可能会非常强烈地解决。应对这些挑战的现有方法往往会对特定问题做出强烈的假设,并且通常需要先验知识或元数据,例如域标签。我们的工作与这些方法是正交的:相反,我们专注于为元数据考古学提供一个统一和有效的框架 - 在数据集中发现和推断示例的元数据。我们使用简单的转换策划了可能存在的数据集(例如,错误标记,非典型或过度分布示例)中可能存在的数据子集,并利用这些探针套件之间的学习动力学差异来推断感兴趣的元数据。我们的方法与跨不同任务的更复杂的缓解方法相提并论:识别和纠正标签错误的示例,对少数民族样本进行分类,优先考虑与培训相关的点并启用相关示例的可扩展人类审核。
translated by 谷歌翻译
人工智能(AI)的应用范围是巨大的,危害可能性也是如此。越来越愤怒地对来自AI系统的潜在风险产生了刺激行动,以解决这些风险,同时侵蚀对AI系统的信心以及发展它们的组织。 2019年研究发现了80多个出版和采用了“AI伦理原则”的组织,从此加入了更多。但原则往往会在“什么”和“如何”之间的差距和“如何”的差距。这样的差距已经启用可疑或道德可疑的行为,这促进了特定组织的可信度,更广泛地。因此,迫切需要允许AI开发人员防止伤害的具体方法,并允许他们通过可验证行为来证明其可靠性。下面,我们探索机制(从ARXIV:2004.07213绘制)创建一个生态系统,即AI开发人员可以获得信任 - 如果他们值得信赖。更好地评估开发商可信度,可以为用户选择,员工行动,投资决策,法律追索和新兴治理提供信息。制度。
translated by 谷歌翻译
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While deep networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
translated by 谷歌翻译
对称性一直是探索广泛复杂系统的基本工具。在机器学习中,在模型和数据中都探索了对称性。在本文中,我们试图将模型家族架构引起的对称性与该家族的内部数据表示的对称性联系起来。我们通过计算一组基本的对称组来做到这一点,我们称它们称为模型的\ emph {Intertwiner组}。这些中的每一个都来自模型的特定非线性层,不同的非线性导致不同的对称组。这些组以模型的权重更改模型的权重,使模型所代表的基础函数保持恒定,但模型内部数据的内部表示可能会改变。我们通过一系列实验将Intertwiner组连接到模型的数据内部表示,这些实验在具有相同体系结构的模型之间探测隐藏状态之间的相似性。我们的工作表明,网络的对称性在该网络的数据表示中传播到对称性中,从而使我们更好地了解架构如何影响学习和预测过程。最后,我们推测,对于Relu网络,交织组可能会为在隐藏层而不是任意线性组合的激活基础上集中模型可解释性探索的共同实践提供理由。
translated by 谷歌翻译
先进的制造技术使生产材料具有最先进的性质。然而,在许多情况下,这些技术的物理学模型的发展落后于实验室的使用。这意味着设计和运行实验在很大程度上通过试验和错误进行。这是次优,因为实验是成本 - ,时间和劳动密集型的。在这项工作中,我们提出了一种机器学习框架,差异属性分类(DPC),使实验者能够利用机器学习的无与伦比的模式匹配能力来追求数据驱动的实验设计。 DPC采用两种可能的实验参数集,并输出预测,其将产生具有由操作员指定的更可望的属性的材料。我们展示了DPC对AA7075管制造工艺和机械性能数据的成功,使用剪切辅助加工和挤出(形状),固相处理技术。我们表明,通过重点关注多个候选实验参数之间的选择,我们可以重新预测从处理参数预测材料属性的具有挑战性的回归任务,进入哪个机器学习模型可以实现良好性能的分类任务。
translated by 谷歌翻译